Fluid-phase uptake by macropinocytosis in Dictyostelium.

نویسندگان

  • U Hacker
  • R Albrecht
  • M Maniak
چکیده

To study fluid-phase endocytosis in living cells and its relationship to changes in the cell cortex, we have used a green fluorescent protein (GFP)-tagged version of coronin, an actin-associated protein that localises to dynamic regions of the Dictyostelium cell cortex. In the confocal microscope, internalisation of fluorescently labelled dextran as a fluid-phase marker can be recorded simultaneously with the recruitment of the coronin-GFP fusion-protein from the cytoplasm of the phagocyte. At crown-shaped surface protrusions, extracellular medium is taken up into vesicles with an average diameter of 1.6 microns, which is significantly larger than the 0.1 microns diameter of clathrin-coated pinosomes. The observed frequency of macropinosome formation can account for a large portion, if not all, of the fluid-phase uptake. The redistribution of coronin-GFP strongly resembles cytoskeletal rearrangements during phagocytosis. Scanning-electron micrographs indicate that crown-shaped cell-surface extensions can undergo shape changes, without a particle bound, that are similar to shape changes that occur during phagocytosis. In quantitative assays, the uptake of particles and fluid are about equally dependent on F-actin and coronin.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

TOR complex 2 (TORC2) in Dictyostelium suppresses phagocytic nutrient capture independently of TORC1-mediated nutrient sensing.

The TOR protein kinase functions in two distinct complexes, TOR complex 1 (TORC1) and 2 (TORC2). TORC1 is required for growth in response to growth factors, nutrients and the cellular energy state; TORC2 regulates AKT signaling, which can modulate cytoskeletal polarization. In its ecological niche, Dictyostelium engulf bacteria and yeast for nutrient capture. Despite the essential role of TORC1...

متن کامل

Dictyostelium discoideum Nucleoside Diphosphate Kinase C Plays a Negative Regulatory Role in Phagocytosis, Macropinocytosis and Exocytosis

Nucleoside diphosphate kinases (NDPKs) are ubiquitous phosphotransfer enzymes responsible for producing most of the nucleoside triphosphates except for ATP. This role is important for the synthesis of nucleic acids and proteins and the metabolism of sugars and lipids. Apart from this housekeeping role NDPKs have been shown to have many regulatory functions in diverse cellular processes includin...

متن کامل

Morphology and dynamics of the endocytic pathway in Dictyostelium discoideum.

Dictyostelium discoideum is a genetically and biochemically tractable social amoeba belonging to the crown group of eukaryotes. It performs some of the tasks characteristic of a leukocyte such as chemotactic motility, macropinocytosis, and phagocytosis that are not performed by other model organisms or are difficult to study. D. discoideum is becoming a popular system to study molecular mechani...

متن کامل

Morphology and Dynamics of the Endocytic Pathway in Dictyostelium discoideum□V

Dictyostelium discoideum is a genetically and biochemically tractable social amoeba belonging to the crown group of eukaryotes. It performs some of the tasks characteristic of a leukocyte such as chemotactic motility, macropinocytosis, and phagocytosis that are not performed by other model organisms or are difficult to study. D. discoideum is becoming a popular system to study molecular mechani...

متن کامل

Neurofibromin controls macropinocytosis and phagocytosis in Dictyostelium

Cells use phagocytosis and macropinocytosis to internalise bulk material, which in phagotrophic organisms supplies the nutrients necessary for growth. Wildtype Dictyostelium amoebae feed on bacteria, but for decades laboratory work has relied on axenic mutants that can also grow on liquid media. We used forward genetics to identify the causative gene underlying this phenotype. This gene encodes...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of cell science

دوره 110 ( Pt 2)  شماره 

صفحات  -

تاریخ انتشار 1997